Application of Regression Modeling to Data Observed Over Time

Authors

DOI:

https://doi.org/10.18568/1980-4865.13342-50

Keywords:

Longitudinal data, Stationarity, Autoregressive models, Granger causality, Lag

Abstract

The central idea of this text is to guide researchers through the application of regression modeling when the data under analysis are observed over time. In general, there are no doubts regarding the application of this modeling in cross sections. However, when there is dependence on the data over time, some care needs to be taken for the results to be reliable and have the same interpretation of the coefficients obtained using the least squares method. The text begins with a presentation of the concept of autocorrelation and partial autocorrelation to identify and apply autoregressive modeling. Following this approach, the Augmented Dickey-Fuller test for detecting stationarity is presented, an essential condition for the estimators of ordinary least squares to be consistent. The Granger causality test is also presented and an example of regression applied to the series of the Cost of Living Index and the National Price Index for General Consumers. All the examples are presented with the help of Microsoft Excel to universalize the technique.

Downloads

Download data is not yet available.

Author Biographies

Cléber da Costa Figueiredo, Escola Superior de Propaganda e Marketing - ESPM.

Doutor em Estatística pela Universidade de São Paulo - USP, São Paulo, (Brasil). Professor da Escola Superior de Propaganda e Marketing – ESPM.

Aldy Fernandes da Silva, Fundação Escola de Comércio Álvares Penteado – FECAP.

Doutor em Engenharia pela Universidade de São Paulo - USP, São Paulo, (Brasil). Professor Pesquisador do Mestrado em Ciências Contábeis da Fundação Escola de Comércio Álvares Penteado – FECAP.

References

Breusch, T. S., & Pagan, A. R. (1979). A Simple test for heteroskedasticity and random coefficient variation. Econometrica, 47(5), 1287–1294.

Bueno, R. L. S. (2011). Econometria. 2ª ed. São Paulo: Cengage Learning, 341 p.

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427–431.

DIEESE (2018). Índice do custo de vida. Disponível em: https://www.dieese.org.br/analiseicv/icv.html. Acessado em 15 de julho de 2018.

Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424–438.

Gujarati, D. (2006). Econometria básica. Rio de Janeiro: Elsevier, 812 p.

IBGE (2018). Índice Nacional de Preços ao Consumidor Amplo. Disponível em: https://ww2.ibge.gov.br/home/estatistica/indicadores/precos/inpc_ipca/defaultinpc.shtm. Acessado em 15 de julho de 2018.

Ljung, G. M., & Box, G. E. P. (1978). On a measure of a lack of fit in time series models. Biometrika, 65(2), 297–303.

Morettin, P. A. (2008). Econometria financeira: um curso de séries temporais financeiras. São Paulo: Blucher, 319 p.

Morettin, P. A., & Tolói, C. M. C. (2006). Análise de séries temporais. São Paulo: Edgar Blücher, 535 p.

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611.

Sweeney, D. J., Williams, T. A., & Anderson, D. R. (2013). Estatística aplicada à administração e economia. 3ª ed. São Paulo: Cengage Learning, 692 p.

Wooldridge, J. M. (2011). Introdução à econometria: uma abordagem moderna. 4ª ed. São Paulo: Cengage Learning, 701 p.

Published

2018-09-01

How to Cite

Figueiredo, C. da C., & Silva, A. F. da. (2018). Application of Regression Modeling to Data Observed Over Time. Internext - International Business and Management Review, 13(3), 42–50. https://doi.org/10.18568/1980-4865.13342-50